Sprouted Challah.

The challah (ceremonial bread with an egg glaze and is braided) that exist today is not what your grandparents and older generations ate. The wheat has been bread to have a much higher levels of gluten and its mass-produced. It possess these anti-nutrients.

Phytic acid: Phytic acid is the main storage form of phosphorus in grains. That’s awesome for the grain, which needs phosphorus, but there’s a catch. Phytate also binds to many minerals, including zinc, magnesium, calcium, and iron, to name several. And, since non-ruminants don’t possess phytase, which digests phytate and releases the bound minerals for easy absorption, eating large quantities of phytate-containing foods results in mineral deficiencies for meat-eating apes. These deficiencies, taken to an extreme, can manifest as tooth decay, which might explain why early grain eating populations had worse teeth than the hunter-gatherers who preceded them.

Enzyme inhibitors: Grains are seeds that require certain wet, nutrient rich conditions for proper growth. Spontaneous germination is counterproductive (you don’t want your children settling down in an area with high crime and high unemployment, do you?), so enzyme inhibitors prevent it. When moisture abounds (like, when soaking grains), the inhibitors are deactivated and sprouting occurs. So why should we care? Certain other enzyme inhibitors also inhibit our ability digest the grains. If you’re relying on grains as a dietary staple, you can’t afford not to wring every last drop of nutrition out of them.

Lectins: I covered lectins fairly comprehensively in a previous post, so I’ll keep it brief. Lectins are nature’s pesticides, protecting the tiny grain from predation. They can perforate the intestinal lining, disrupt our immune systems, and there’s even evidence that they bind to leptin receptors in the hypothalamus (potentially triggering leptin resistance).

Gluten: You know this guy. Found in wheat, rye, and barley, he’s a real bastard of a protein – and possibly not just to celiacs. There’s some evidence that true fermentation can break down gluten, but not all of it. Some Italian researchers used a unique blend of bacterial species to break down 99% of the gluten in sourdough bread, but it was under strict, extremely contrived laboratory conditions. More on that later.

For thousands of years breads have been soaked in water for at least a day, and sprouted for several days after that. The grains than would be ground up into a flour that would produce a very rough, not sweet bread that is harder than modern bread. The closest tasting breads that are like this are the Eziekel brand breads which have to be refrigerated. This whole process weakens the power of the anti-nutrients of the wheat. Most traditional cultures have practiced this as well.

I’ve written about soaking nuts and seeds before, and soaking grains is the same idea. The grains are covered with water, placed in a preferably warm place, and soaked for between 12 and 24 hours. There’s not much more to it than that. After soaking, you drain them, rinse them, and let the grains sit out for a couple days. To get grains to sprout, rinse and drain them a couple times each day until sprouts emerge.

Effect on phytate: If the grain contains phytase, some of the mineral-binding phytic acid will be deactivated, but not much. And if the grain has been heat-treated, which destroys phytase, or it contains very little phytase to begin with, the phytic acid will remain completely intact. Overall, neither soaking nor sprouting deactivates a significant amount of phytate.

Effect on enzyme inhibitors: Well, since the seed has been placed in a wet medium and allowed to sprout, the enzyme inhibitors are obviously mostly deactivated. Digestion is much improved (cooking will improve it further).

Effect on lectins: The evidence is mixed, and it seems to depend on the grain. Sprouted wheat, for example, is extremely high in WGA, the infamous wheat lectin. As the wheat grain germinates, the WGA is retained in the sprout and is dispersed throughout the finished plant. In other grains, sprouting seems more beneficial, but there’s always some residual lectins that may need further processing to deactivate.

Effect on gluten: Sprouting reduces gluten to some extent, but not by very much. Don’t count on it. A little bit goes a long way.

Also a lot of times breads would be fermented, since there was no method of refrigeration at the time. This type of bread is called sourdough.

After soaking and grinding, grains are traditionally mixed with a starter culture or allowed to wild ferment. Starter cultures often include whey, kefir, yogurt, or left over fermentation medium from the previous batch. Wild fermentation occurs when the grain mixture employs bacteria already present on the grains, or picks up wild yeasts and bacteria from the environment. Both methods are far more effective than just soaking and sprouting at deactivating antinutrients and improving digestibility. Plus, fermentation lends interesting flavors to and enhances the shelf-life of the resultant food (which was extremely valuable in the days before refrigeration and canning).

Effect on phytate: Remember phytase? It’s the enzyme that deactivates phytate, and it really gets cooking during fermentation. In grains that contain high amounts of phytase, like wheat, rye, and buckwheat (technically a pseudo-cereal, but close enough), a day of fermentation deactivates most of the phytate. To degrade the phytate in low-phytase grains, however, the fermentation time must be extended. Adding small amounts of phytase-containing grain to the mix will also speed up the process. Increasing the temperature also improves phytate breakdown. In millet, a low-phytase grain, it took 72 hours to completely degrade the phytate. In wheat, it took ten hours to reach a maximum of 88.8% phytate reduction using a specific bacterial strain. Other strains resulted in reductions of between 28% and 86% (with most reaching above 80%). Standard quick rise baker’s yeast only reduced 16% of phytate (that’s what 99% of wheat eaters are eating nowadays, remember!). Ten hours may not always be enough, however – another fermentation study found that at 48 hours, phytate in wheat was still degrading.

Effect on enzyme inhibitors: Fermentation also significantly reduces enzyme inhibitor activity. A few examples would be prudent, since fermentation has different effects on different enzyme inhibitors in different grains. In 24 hour traditional sorghum fermentation, both trypsin inhibitor and amylase inhibitor (which impedes starch digestion) were reduced by up to 58% and 75%, respectively. In millet, a 48 hour fermentation was required to completely deactivate amylase inhibitor. As I mentioned in the last section, one study found that 48 hours of fermentation resulted in maximum wheat starch digestibility, presumably by deactivating amylase inhibitor.

Effect on lectins: Fermentation reduces lectin load fairly comprehensively across the board, but it might take longer than you can spare. In lentils (I know, not a grain, but with similar antinutrient issues), 72 and 96 hours of fermentation at 42 degrees C eliminated 98% and 97.8% of the lectins, respectively. Specific info on grain lectin breakdown due to fermentation is sparse. Overall, fermentation appears to be pretty effective at reducing lectins (and cooking reduces them further).

Effect on gluten: No store bought garden variety sourdough you find is going to be gluten-free. A team from Italy was able to produce a gluten-free sourdough wheat bread by using specific bacterial strains from all over the world and subjecting the bread to many days of fermentation. The process was totally unfeasible for the home or average commercial baker. There’s also a guy who sells monthlong fermented sourdough bread out of LA-area farmers’ markets and claims celiacs can eat it without issue. Reviews on Yelp seem to corroborate. Maybe I’ll swing by his stand and give it a shot, but I’m skeptical. And besides, I’m personally more worried by WGA, which is biologically active at nanomolar concentrations and which may not be fully degraded by fermentation.

The rest of the article

So what can we do to make challah? Use sprouted grains, quinoa, spelt, buckwheat, gluten free flours. I don’t know which of these is glatt kosher yet, so I will in the future read some books on koshrut laws and what strains of wheat are allowed. For the rest of the week I would keep your consumption of wheat to a bare minimum, just enough to do Motzi. If you have any sort of gluten intolerance or Celiacs disease, its best just to avoid all wheat-like grains. There are also gluten-free matzah, available around passover by Yuhuda  which tastes better than traditional wheat matzah. Its uses honey and pototoe starch. Its also almost transparent looking.

 

7 thoughts on “Sprouted Challah.

  1. Have you tried to make challah yet from any of the alternative flours that you mentioned? I am looking for something to successfully replace the wheat flour in my challah recipe. I tried using Bob’s Red Mill Gluten Free flour, but ended up with a door stop instead of challah. We have been making a coconut bread as a substitute, but it just doesn’t seem the same to make motzi over it.

  2. Try Einkorn wheat. It is the “original” form of wheat and likely what was used in Israel for the baking of bread. It is not nearly as, uhm, toxic as modern wheat. It has gluten, but the protein makeup of the gluten is not nearly as sophisticated, and is apparently significantly less dangerous to humans.

  3. Einkorn wheat was actually in use as late as 1970 in the US. I heard its history is more depth in Wheat Belly. I have a feeling it still should be avoided until entirely healed from a senstivity, if that’s possible.

  4. There are no restrictions, in the laws of kosher, on grains – except, of course, during Passover – that you need to worry about. As long as there are no bugs in it, it should be fine. The term “glatt” refers to meat. It means “smooth” (in Yiddish) and refers to the inspection of internal organs after slaughter.

Feel free to chime in any ideas.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s